Functions in Context Data Base
Austin Tate

ATAT-TR-1

Paper published in the Proceedings of the Second Workshop on Archi-
tectures for Large Knowledge Bases, sponsored by the U.K. Alvey
Directorate at Manchester University, U.K. on 9th-11th July 1984,
Published on behalf of the Alvey Directorate by the Institute of
Electrical Engineers, London.

Appendix published in the Proceedings of the First Workshop on
Architectures for Large Knowledge Bases, sponsored by the U.K. Alvey
Directorate at Manchester University, U.K. on 22nd-24th May 1984,
Published on behalf of the Alvey Directorate by the Institute of
Electrical Engineers, London.

Artificial Intelligence Applications Institute
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
United Kingdom

Functions in Context Data Base

Austin Tate

Dept. of Artificial Intelligence

University of Edinburgh

Hope Park Square

Edinburgh EH8 9NW 21-Jun-84

Introduction

Several Artificial Intelligence Data Base Support Systems provide a

"context" mechanism. Examples are CONNIVER (McDermott and Sussman, 1972),
QA4/QLISP (Sacerdoti et al, 1976), PEARL (Deering et al, 1981) and HBASE
(Barrow, 1975). These provide facilities for efficiently storing a changing
data base by remembering the alterations made to an earlier state of the data
base. They provide facilities for the storage of data with respect to a fully
ordered sequence of such layered changes. Hence, a tree of layers is formed
in which the current "context" is defined by a path of layers back up through
the tree. "Partitioned Semantic Networks" (eg, Hendrix, 1975) also provide
similar features.

Some AI systems (such as planners able to reason with partially ordered action
sequences - the so-called "non-linear" planners) have a requirement to be

able to store and retrieve data in a partially ordered network of such layers.
The incremental nature of the process by which partially ordered plans are
built makes it very desirable that we store only the changes made to the data
base at any point (rather than trying to maintain a complete copy of the data
base as new ordering constraints or extra information at nodes is added).

O\
/\ .

A tree of layers A partially ordered network of layers

In a tree of layers, there is a strict overriding order om changes to data.
However, in the partially ordered network of layers, an answer to any query
will depend on changes made at points in parallel with the point where a query
is asked as well as the answers available by retracing to earlier points where
data was stored or altered.

Functional Statements

In order to provide a readily understood basis for the storage of data which
changes in different "contexts", a functional form of statement is used

function (argument 1, argument 2, ...) = value

in which the value for a given function name and arguments is unique in any
one context but may change between contexts. Several AI researchers have
exploited the uniqueness of a function”s value to provide added control
information in search processes (e.g., Bundy, 1977).

The Meaning of "Context"

The interpretations of each node in a context, the meaning of layered changes
that go into defining the value that can be retrieved for a given function
name and arguments, the meaning of the ordering (perhaps only partial)

between the nodes, and the pupose of the whole collection of nodes and links
being handled at any particular time (called a configuration) are all user
defined. In an AI planning system, the nodes may be interpreted as actions,
the layered changes to statements at a node being used to represent
alternatives being considered or different levels of specification, and the
partial order between them may define a time ordering. In a software tools
database, nodes could be interpreted as software modules, the layered changes
to statements at a node could be used to represent the different properties of
the various versions of the.module, and the relationships defined between
nodes may be used to represent compilation orders for systems. Other uses may
include the specification of a class/sub-class/instance property inheritance
system where multiple super-classes were allowed and, perhaps, different
levels of abstraction were present.

Previous Work

Tate (1976) describes a question answering system implemented in the NONLIN
planner which can store and retrieve functional statements made with respect
to points in a partially ordered network of layered changes to a data base.
However, the algorithms used assumed that only a single network structure was
being handled. It remained the responsibility of the planner to establish (to
the data base and question answering system) the particular network
configuration to be used at any stage. Hence, the planner used a tree of
layered changes to the various structures it employed and separately
maintained information to give to the data base and question answering system
which could then be used for storage and retrieval in a "current" partially
ordered network being handled. This use of different representations
introduced its own complexities.

Motivation

The efficiency of the data base, alternatives management and question
answering system are critical to the overall performance of the planner.
Hence, the overall requirements have been restated in the "Functions in
Context" data model and interface specification in order that a single system
can be provided to combine data storage and retrieval in a partially ordered
network of nodes with management of incremental changes to any of those nodes.

One major motivatiom for this was the desire to improve the internmal
management of the necessary net marking schemes without altering a simple
functional interface to the planmer. Another, was the growing realisation
that hardware schemes proposed for context addressable memory often included
many of the basic mechanisms necessary for the efficient implementation of the
required operations and could more efficiently manage some of the net marking
operations. Hence, the hope is that the statement of the requirement in a

-2 -

form that is independent of the planner”s use of the facilities will enable
workers on content addredsable memories and new data base systems to consider
their relavance for the highly dynamic data storage system envisaged here.
References

Barrow, H,G. (1975) HBASE: a fast clean efficient data base system,
POP-2 Program Library Documentation, Edinburgh University.

Bundy, A. (1977) Exploiting the Properties of Functions to Control Search,
DAI Research Report No. 45, Edinburgh University.

Deering, M, Faletti, J. and Wilensky, R (1981) PEARL - a package for efficient
access to representations in LISP, IJCAI-81 pp 930-932, Vancouver, Canada

Hendrix, G.G. (1977) Expanding the Utility of Semantic Networks through
Partitioning, IJCAI-75, Tbilisi, USSR.

McDermott, D.V. and Sussman, G.J. (1972), The CONNIVER Reference Manual,
MIT AI Lab Memo No 259

Sacerdoti, E.D., Fikes, R.E., Reboh, R., Sagalowicz, D. and Waldinger, R.J.
(1976) QLISP: a language for the interactive development of complex
systems, SRI Tech Note, SRI International, Stanford, Ca.

Tate, A. (1976) Project Planning using a Hierarchic Non-linear Planner
DAI Research Report No. 25, Edinburgh University

Statement of the Requirements of the "Functions in Context" Data Model
1. Statements

1.1 Statements are of the form: f(argl,arg2,...)=value at node

1.2 For any fixed f, argl, arg2, etc the value is unique at a given node
1.3 The value can vary at different nodes

1.4 The special value "undef" is used to indicate that the value for the given
f, argl, arg2, etc is not set

1.5 Notionally, the value in all possible statements at all possible nodes is
initially undef

1.6 The function name must be a string (called a "simple" identifier)

1.7 The arguments may be a string or number ("simple" identifiers) or
"compound" identifiers of the form f(argl,arg2,...)

2. Nodes
2.1 A nev node may be created at any time

2.2 Optionally, the new node may be indicated as a new version of some
existing node

2.3 A new derived node will inherit all statements given to the old version
of such a“node

2.4 The inheritance may be static (the node becomes an independent copy of
the present state of the original node) or may be dynamic (changes to the
original node or its own dynamic earlier versions may be reflected at the
new node unless explicitly overridden)

3. Links between Nodes

3.1 Nodes can be related via a directed link (hence they can participate in
tree or graph ordered relationships)

3.2 It is an error to attempt to introduce a cyclic link. Such a link will
not be stored. Redundant links will be removed by the system

3.3 The meaning of this link can be attributed by the user (eg, "after" for
a temporal link, "is—a" for a class/subclass or instance link, etc).
Note that due to the restriction im 3.2, interpretations of the link
apparently requiring cyclic graphs must be represented at a level that
does not involve cycles

3.4 Values for any given f, argl, arg2, etc at later nodes override those at
earlier nodes

3.5 Different values for any given £, argl, arg2, etc at nodes not ordered
with respect to one another will result in multiple possible answers on
retrieval (see 6.7b)

4, Islands

4.1 The set of nodes connected together by directed links are said to be in a
single island.

4.2 It is undecided if an island has any real function in the data model (such
as retrieval being relative to a "current" island in the "current"
configuration) and if an explicit recognition of the nodes not
participating in any directed link should be distinguished as in a "none"
island

5. Configurations

5.1 Several individual nodes, trees of nodes or graphs of nodes as specified
by the directed links between them may co-exist in a single configuration
(ie, there may be several islands in a configuration)

5.2 The meaning of the directed link attributed by the user may vary between
the different "islands" of nodes

5.3 It is possible to alter the "current" configuration being handled by the
system by stating the nodes that participate in the new configuration
and the directed links that hold between them

5.4 All statements made for a node or retrieval requests are with respect to
the current configuration

5.5 A new configuration may be created at any time

5.6 Optionally, the new configuration may be indicated as a new version of
some existing configuration

5.7 A new derived configuration will inherit all nodes, directed links and
name associations given to the old version of such a configuration

5.8 The inheritance may be static (the configuration becomes an independent
copy of the present state of the original configuration) or may be
dynamic (changes to the original configuration or its own dynamic earlier
versions may be reflected at the new configuration unless explicily
overridden)

5.9 To give access to meta-data stored by the system itself (such as
support_statements) and to ease the use of the system in a simple
non-context mode, there will be a predefined node in every configuration
which will be made available when a configuration is opened. This will
be known as the GLOBAL node for the configuration

6. Retrieval

6.1 Retrieval of statements is via a partial specification of the form of
the statement required

6.2 The node at which the retrieval request is made is restricted to
being fully defined. It is specified as a node number allocated by the
data base system when the relevant node was created

6.3 The function name and arguments in a retrieval request can be defined
by retrieval specifications. There should be some method of giving
a retrieval specification that means "match all possible function and
argument combinations of any arity" (?? om its own - 6.4)

6.4 Allowable retrieval specifications must include the following:

a) ?? to match anything
b) ?not(<further specification>)
c) ?or(<further specification 1>,<further specification 2>,...)

d) ?and(<further specification 1>,<further specification 2>,40.)

e) ?name (a "logical" variable whose value is restricted or set
during matching but which is reset for different matches)

f) ?included_in(<argument place>,
<specification of identifier which includes the
one currently being matched in the indicated place>,
<specification of value of this super-statement>)

6.5

6.6

6.7

6.8

6.9

eg, ?included_in(1,colour(??),red) would match any identifier, say X,
that participated in a statement of the form colour(X)=red

Others may be provided for comparison of identifiers, etc

Retrieval results should be returned via a "generator" token that can
be used with a "try_next" mechanism to generate answers one at a time.
It is permissable for all result generator tokens to become invalid
whenever a new configuration is opened (11.1)

Retrieval operators ignore statements whose value is "undef"
Retrieval must be able to return two classes of result

a) statements with the required value at the given node or statements with
the required value at some node which participates in a directed link
relationship with the given node and whose value is not overridden at
the given node

b) a set of directed links which would need to be included in the current
configuration in order to cause a statement with the required value to
be available at the given node

In order to accommodate both types of result and the different uses to
which the results may be put, the try-next mechanism from the results
generator token will return

a) the instantiated f(argl,arg2,...) form

b) the instantiated value

c) the "contributing" node (the node from which the value was made
available)

d) a set of directed links which need to be added to the current
configuration in order to make this result valid (this will be the
empty set for results where no links are necessary)

The request for a retrieval (to get a generator token) may specify that
only results where no extra links are necessary are required

7. Explicit Deletions

7.1

7.2

Setting f(argl,arg2,..)=undef at node resets the value to "not set" which
is ignored by retrieval operations (hence, the statement may be considered
as a deletion of an explicit statement if desired)

The ability to explicitly throw away nodes, links, intermediate versions
of nodes or configurations and/or generators may be desirable

8., Statement Support Maintenance

The user of the system will often make a statement at some node based on
a computation or inference made from a set of statements retrieved from
other contributing nodes in the current configuration. One common

-6 -

8.1

8.2

8.3

8.4

requirement of such use is to ensure that the support for such
computations or inferences continues to be present

Allow support statements of the form:

f(argl,arg2,...)= <value> from <contributing node> to <node>

to be stated. Any interaction with some existing statement should be
reported as an error. A user defined annotation (any string) should be
allowed to be associated with any support statement

When a statement is made at a node, a check should be performed against
all existing support statements. If there are any conflicts, the set of
support statements invalidated should be removed from the data base and
returned to the user (hence keeping the data base valid) along with any
associated annotation on them

It should be possible to perform a check on the support statements
that would be invalidated if a statement was stored without actually
storing it

The support statements should all be accesible as normal statements

in the form:

support_statement(<annotation>,f(argl,arg2,...),<value>,<to node>) =
<contributing node>

at a GLOBAL node which is predefined in each configuration (5.9)

9. Name Associations

9.1

9.2

9.3

9.4

9.5

For any configuration it is possible to associate a user provided name or
tag (any identifier) with some value by storing e.g.
assoc(<name>) = <value> at GLOBAL.

For such a purpose, the value must be able to represent a node, and to
allow for the naming of configurations, it must also be able to represent
a configuration.

To help with configuration name associations, there will be a predefined
configuration which which is made available when the data base system is
initialised

Given a name or tag , it is possible to look up the associated value and
treat it as a configuration, node or any user defined value

To ease the use of this facility for simple identifier associations with
respect to a configuration, the storage and retrieval of statements

of the form assoc(<simple identifier>) = <value> at GLOBAL

for a fixed <name> could be provided through a simple interface.

10, Program Services

10.1 A user provided annotation (any string) can be associated with a node.

This will be with respect to the current configuration

10.2 The list of nodes in the current configuration can be obtained,

together with any user provided annotation associated with the nodes

10.3 The set of immediately linked successor nodes of any node can be
obtained for any configuration

10.4 The set of immediately linked predecessor nodes of any node can be
obtained for any configuration

10.5 Two nodes can be checked to see whether they are ordered with respect
to one another for any configuration

11. Transactions

11,1 A configuration may be opened as the current configuration, any
currently open configuration is aborted (11.4)

11.2 The GLOBAL node for the configuration (5.9) is made available
when a configuration is opened

11.3 A commit on the current configuration may be performed to make
permanent all changes to the nodes in the configuration, the directed
links introduced between them, the statements made at nodes, node
annotations and name associations. This also closes the configuration

11.4 An abort on.the current configuration resets the configuration to its
state at the corresponding open. This also closes the configuration

11.5 A common operation is to commit the current configuration, create a
new configuration with the committed one as dynamic parent and then
open this new configuration. This operation should be provided in
a packaged way

11.6 A common operation is to commit the current configuration, create, open
and use several new configurations with the committed one as dynamic
parent. One of the children will then be chosen for further effort.
This type of operation should be supported efficiently

11.7 When the data base system is initialised, the predefined configuration
used to aid in name association (9.3) or simple non-context use of the
data base 1is pre-opened

12, Desirable Properties of an Implementation

12.1 Creation of a new version of a node which dynamically inherits the
statements in an old node may be delayed until changes are actually
made to the new version (this could improve the efficiency of making a new
version of a configuration in which little change is expected). This
feature may be allied to the transaction mechanism

12.2 Garbage collection of unreachable information, node versions or
configuration versions

12.3 The retrieval generator should be lazy-evaluated
12.4 Multiple disjoint "contributing" nodes for a retrieval result could be

returned to reduce the alternatives that need to be considered by a
user. This would need to be allied to multiple contributing nodes in

-8 -

12.5

12.6

12.7

12.8

support statements (8.l1) and an automatic system to allow the number
of disjoint contributors to be reduced to one without disallowing
a statement to be stored

Overlay of a property inheritance scheme to allow statements of the form
is—a(<class>=<subclass or instance> to be mapped to a form that provides
automatic property inheritance to all nodes in a configuration

Declaration of the form of meta-data statements stored in the GLOBAL
node of each configuration in order that these can be accessed by
user programs. Only the support_statements must be accessible in this
way. However, other program services such as getting the links,
predecessor nodes, successor nodes, annotations, etc could all be
provided by this method if desired

It has been found useful to allow a particular argument of all statements
with a given compound identifier to be altered. This can be used to
refer cyclic structures into the data base, etc. The values of all
statements involved are not altered

If the implementation maintains indexes to look up from a given function
name or arguments, it would be useful to allow a user to indicate when
an index for some identifier used as a function name or as an argument
in some given place should not be kept

13. Performance and Size Targets (based on use for a particular AI planner)

13.1

13.2

13.3

13.4

13.5

13.6

13.7

It should be possible to store statements with more than 5 arguments
and a "compound" argument should be able to have a depth of 3 or more

It should be possible to maintain more than 1000 nodes in a single
configuration

It should be possible to maintain an average of 5 to 10 layers in a
dynamically inherited version of a node. However, on ome or two nodes,
more than 10,000 layers (representing over 10,000 major choice points to
the planner) will be needed

It should be possible to maintain more than 20 name associations in a
configuration

It should be possible to maintain more than 1000 configurations (a new
planner design should reduce the number of configurations needed to
between 10 and 100)

It should be possible to maintain more than 100 retrieval result
generators concurrently

It should be possible to maintain node and support statement annotations
of at least 255 characters

Specification of a particular interface

Tokens manipulated by the interfaces

<identifier>

<value>

<data base item token>

<statement token>

<support statement token>

<node token>

<global node token>

<config token>

<global config token>

<generator token>

<retrieval result token>

is "simple" (string or number) or "compound" of form
f(argl,arg2,...) for 0 to n arguments

is undef or <user interpreted data>

is a special form of <statement token>
in that its identifier, value and contributing
node (GLOBAL) have predefined formats

is a special <node token> returned when a
configuration is opened

is a special <config token> returned when
the data base system is initialsed

undef for no possible answer(s)
termin for no (more) result(s)

Useful Constants for the various sections

1. stored_ok
undef

2. dynamic
static

3. linked_ok
not_linked

4, no_parent_node

5. mno_parent_config

6. with_links
without_links
simple_id

7. none,

8. no_annotation
conflict
no_conflict
global node

9, to 11, none

null list
not set value

true
false

true
false

predefined <node token>
predefined <config token>
true

false
-1

“support”
= true

false

special <node token> for the predefined node in each config

12. as_function name = 0

- 10 -

Interface functions for the various sections

0.

4.

initialise() -> <global config téken>
terminate()

store(<compound identifier>,<value>,<at node token>) =>
list of <support statement tokens> removed to keep data base valid

new_node(<parent node token>,<dynamic flag>) => <new node token>

<parent node token> no_parent_node for no parent
or <node token>
<dynamic flag> = dynamic for dynamic inheritance

= gtatic for static inheritance

link_nodes(<from node token>,<to node token>) => <inserted flag>

<inserted flag> linked ok if the link is added
not_linked if it would have

introduced a cycle

none

new_config(<parent config token>,<dynamic flag>) ~> <new config token>

<parent config token> = no_parent_config for no parent
or <config token>

dynamic for dynamic inheritance
static for static inheritance

<dynamic flag>

get_all(<identifier specification>,<value specification>,
<node token>,<link flag>) => <generator token>

<link flag> = with_links if results should
include those where directed
link additions would be
necessary to support the
answver
= without_links otherwise
try_next(<generator token>) -> <retrieval result token>
<retrieval result token> could be termin if no result
identifier(<retrieval result token>) => <data base item token>
value(<retrieval result token>) -> <user interpreted data>

contrib_nodes(<retrieval result token>) => list of <node tokens>

added_links(<retrieval result token>) ~> list of pairs of <node tokens>

-11 -

10,

arity(<data base item token>) -> <arity>

<arity> =0 to n for a compound
. identifier
= gimple_id for a simple
identifier

instantiation(<data base item token>) -> <external form of identifier>

<external form of identifier> is a string, number,
or a defined f(argl,arg2,...) form

identifier components(<compound data base item token>)
-> list of <data base item tokens>

result has function name first followed by arguments

delete_node(<node token>)
delete_link(<from node token>,<to node token>)
delete_generator(<generator token>)

store_support(<annotation>,<compound identifier>,<value>,<at node token>,
list of contributing <node tokens>) => <stored flag>

<annotation> = no_annotation or
<user interpreted data>
<gtored flag> = no_conflict if no conflict

occurs with existing
statements and hence
this can be stored

= conflict otherwise

invalidated_support_if(<compound identifier>,<value>,<at node token>)
-> list of <support statement tokens>

store_assoc(<name>,<assoc value>)
<name> = <simple identifier>
<assoc value> = <user interpreted data>
or <config token>
or <node token>
get_assoc(<name>) -> <assoc value>
store_node_annotation(<node token>,<annotation>)
<annotation> = <user interpreted data>
get_node_annotation(<node token>) =-> <annotation>

nodes_in_config() -> list of <node tokens>

prenodes(<node token>) -> list of <node tokens>

-12 -

succnodes(<Node token>) -> list of <node tokens>
before(<earlier node token>,<later node token>) -> <boolean>
after(<earlier node token>,<later node token>) => <boolean>

in_parallel(<node token>,<node token>) =-> <boolean>

11. open_config(<config token>) => <global node token>

commit_config
abort_config

close_and_open derived_config() -> <config token> -> <global node token>

12, data_base_item(<identifier>) -> <data base item token>

set_arguments(<data base item token>,<place>,<new argument identifier>)
no_index_for(<retrieval specification>,<place>)

<place> = as_function _name for function name
1l to n for an argument place

if <retrieval specification> is "match all function
name and argument combinations of any arity" then
indexes will not be kept for any identifiers in the
specified place (177)

Implementation Notes

1.

2.

{ £ argl arg2 ... } is used to represent f(argl,arg2,...)

A <data base item token> can be used interchangeably with the unique
identifier for the represented data base item (ie, a data_base_item is
performed as needed on an identifier and an instantiation is performed
as needed on a data base item token).

A software implementation of the data model may introduce a structure
called a "layer". Each node in each configuration has an associated layer.
a layer tree is built up from a root layer normally using layer tokens
which are integers that increase monatonically along any branch.

Statements are stored with respect to the current associated layer of the
node being referred to. A new transaction notionally creates a new
associated layer for each node in the configuartion with the old associated
layers as their dynamic parents. It is only on a commit that these new
associated layers are genuinely associated with the nodes of the
configuration. It is possible to only create new layers for nodes where
statement values are actually changed. Layer to value association pairs
are stored with the relevant identifiers in such a way that rapid access
to the relevant layer to value association can be obtained when the

.associated layer of a node is known. This involves knowing the parent of

‘any layer.

- 13 -

4.

Consideration of the implementation of the functions in context data
model on a generic associative store (such as FACT at Strathclyde
University) has been made. Generic associative stores allow set oriented
operations on trees of objects such as configuration and node layers.

In additions, once a particular graph of nodes is being operated on, the
generic stores can be used to perform rapid operations on ONE such graph.
These operations can be overlayed with content addressing of the tuples
and values of interest to the query routines.

The operations performed to support queries in the functions in context
data model require fast operations on complex graphs. A dedicated
graph processor or use of a generic associative store to implement
the following functions would be of assistance.
5.1 load a graph of nodes and links between pairs of nodes
5.2 add or delete nodes or links removing redundant links in the process
5.3 set a node as the "focus"
5.4 mark a set of nodes as "special" (defined by some external system)
5.5 queries:
5.5.1 is a node before, after or in parallel with the "focus"
5.5.2 get set of "special" nodes in parallel with the "focus"
5.5.3 get set of "special" nodes before "focus" which are not
themselves before another "special" node itself before the
"focus" (i.e. get last incoming "special’ node on any branch

before the "focus")

5.6 ability to read out the node and links lists

Acknowledgements

This work was supported by an IT Fellowship from Edinburgh University
and a Fellowship from Systems Designers.

- 14 -

Diagrammatic Representation of a Configuration

/.\, (] {] /‘\\ [I/.\
e /0\] [/0\ /

ComFIGVRATION

G directed link

<:::> node

® layer

, child to parent layer link (new version creation)

\& alternative links to other children layers to lead to
v// other alternative configurations

- 15 =

A possible saftoore implemanbalion sEruchue

<—— CONFIGURATION MASAGEMENT

me associabions root-conbis

o '! Conkig \ayer
' Gea
&—) STORES coAPIe VERS 1al$§
G Lol NO0E rioLDS;
- Addle \isk

— direcred link lusb
— assocddned lanesd

/ — Name alsaciakions
A 4 / Y- -kyqf‘

Conbigurakion/Graph

orieaked refrieval

QUERIES
A

\a,yal' éree

STERES Nope Vérsios

I‘a'ﬂaAAu_Y
Space o€ all
possible denbifien
o€ form

-F(ugt,«r,z,...)

£ (?‘;97-:---)4°L \\o.ye.t- £ value
S o < a valvey
/

NoTio AALLY
a.“ Qa::: Fre ZAMH (-ien ;AZE;A“y
have value unde<$ in_ Eha, y)

- & - e “ o o

® rost layec | undef

ok layer”™ Ga, ak any nade
whare a value has waot speci€ically
. Ybeen assigned.

- m en e aw wm @/ En e en e em e ® ams e ame

-16-

APPENDIX

A Partially-ordered Context Layered Knowledge Base for AI Planning

A position paper to the First Alvey Workshop on Architectures for Large
Knowledge Bases. Manchester University, U.K. 22nd - 24th May 1984,

A Partially-ordered Context Layered Knowledge Base for AI Planning

Austin Tate

Department of Artificial Intelligence

Hope Park Square

Edinburgh EH8 9NW

I am concerned with the production of an AI planner based on a hierarchic
representation of a domain. The planner generates a partially ordered network
of tasks that can satisfy stated objectives in the application domain. It
thus generates a PERT-like project network. Typical domains include civil

engineering, maintenance, command and control, spacecraft sequencing, robotic

device control, etc,

As part of this work, I am concerned with the following activities:-

~ the design of a flexible planner prototype

- the design of a knowledge based interface for description of the
application domain to the planner and for the presentation of planning
results to the user

- the integration of the (re-startable) planner with run—time condition
monitoring and re-planning on failures

- the use of the planning system on a large, realistic demonstration

application.

The project is based on earlier work on the NONLIN planner (Tate, 1976), "Goal
Structure” information to capture the "intent" of plams (Tate, 1975) and the

Task Formalism domain description language (Tate, 1976).

In order to construct the planner envisaged, a support knowledge base is
required which can cope with a great deal of dymamic activity in terms of
information that is related to time and to search alternatives. A simple

system able to cope with the required operations has been in use in the

-1 -

existing NONLIN planner for some time. Improvements to the "Question
Answering in a Partially—ordered.Network of Nodes'" algorithms used have been

proposed (Daniel and Tate, 1982).

The closeness of the required operations of marker propogation on graphs to
those becoming possible on advanced hardware data bases such as NETL (Fahlman,
1979) and FACT (McGregor and Malome, 1982) and the slowness of serial computer
implementations of the inherently parallel algorithms involved have led to the
proposal to abstract out the required functionality. This will allow a simple
slow implementation at present (to enable the AI planning research to get on
with its own job) and at the same time provide a statement of requirement for
those concerned with large, flexible knowledge bases for Intelligent Knowledge

Based Systems.,

Functions in Context Data Model

The development of an entity/relationship data base system with context
varying values is an essential component of the planning system envisaged.
The functions to be performed by this system are presently implemented in
NONLIN by a simple tuple store (HBASE) with incremental fully ordered changes
of values (rather like the CONNIVER tree-structured context mechanism). On
top of this, code integrated into the planner models a partially ordered set
of changes of value. This scheme is a known performance bottlemeck of the

existing NONLIN planner.

We wish to abstract out the full data model which is necessary to support the
planner and to provide a clean interface to this as a separate system. The
data model will store clauses of the form:

f(pl,p2, ...) = value in context

and allows for retrieval of partially specified matching items (via a "lazy-

- 2 -

evaluated" '"generator" and "try-next" mechanism). The system will allow the
specification and ret;ntion of a context as a point in a partially ordered set
of changes to the values of entities (which may be relationships or tuples of
other entities). Consideration must be given to the highly dynamic nature of
the definition of the current context (as a point which is built up as as
layer upon layer of changes at various points in a graph of nodes that is
itself being constantly reconfigured). There will be a search space
containing many alternative graph arrangements concurrently being explored.

Garbage collection of unusable information would be critical.

The "Functions in Context" data model has very general applicability and could
be used in areas such as software engineering tool communication, multiple
inheritance knowledge representations, etc. as well as in planning. Although
it can support the storage and retrieval of multi-valued logical formalisms
with special treatment of "contexts", it can also be used to support more

traditional boolean logics or logic programming unit clauses.

The work to be performed during the planning research will provide a software
implementation of the data model for a limited size data base sufficient to
support the needs of the planmer and other demonstration components needing
it. This will use earlier work on HBASE, RBASE and NONLIN“s Question

Answering System as starting points.

However, the design and implementation will take into account the requirement
for efficiency and size at a later date by ensuring that interfaces exist at
which hardware tuple stores and concurrent access persistent stores could be
used to implement the "Functions in Context" data model. Property inheritance
schemes to exploit generic associative semantic stores will also be considered

(to provide support for a multi-valued many-sorted logic formalism).

References
Barrow, H.G. (1975) "HBASE: a fast clean efficient data base system"

D.A.I. POP-2 library documentation. Edinburgh University.

Daniel, L. and Tate, A. (1982) "A retrospective on the “Planning: a joint
AI/OR approach” project" D.A.I. working paper no.125.

Edinburgh University.

Fahlman, S.E. (1979) "NETL: a System for Representing Real World Knowledge"

MIT Press, Cambridge, Mass. USA.

McDermott, D.V. and Sussman, G.J. (1972) "The CONNIVER Reference Manual"

M.I.T. AI Lab. Memo no.259,

McGregor, D.R. and Malone, J.R. (1981). The FACT Database:
A System using Generic Associative Networks, Research Report

No. 2/80. Department of Computer Science, Univ. of Strathclyde.

Tate, A, (1975) "Using Goal Structure to Direct Search in a Problem Solver"

Ph.D. Thesis, Edinburgh University.

Tate, A, (1976) "Project Planning Using a Hierarchic Non-linear Planner"
Department of Artificial Intelligence Report 25, Edinburgh

University.

Tate, A. (1981) "RBASE - a Relational Data Base System on EMAS"

ERCC, Edinburgh University, Technical Monograph No. 1.

